B.A/B.Sc 1st Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH1CC01 (Calculus, Geometry and Differential Equation)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1.	1. Answer any six questions: $5 \times 6 = 3$: 30
(a)	(i)	Prove that $sinh^{-1}x = \log(x + \sqrt{x^2 + 1})$, for all $x \in \mathbb{R}$.	[2+3]
	(ii)	Find the points of inflexion, if any, of the curve $y = e^{-x^2}$.	
(b)	(i)	Trace the curve $x = y(y^2 - 1)$.	[3+2]
	(ii)	Find the nature of concavity of the curves (i) $y = x^4$ and (ii) $y = e^x$.	
(c)	(i)	Evaluate $\int_0^{\frac{\pi}{4}} tan^5 x dx$ by reduction formula.	[2+3]
	(ii)	Derive a reduction formula for $\int x(logx)^n dx$ for $n \in \mathbb{Z}^+$.	
(d)	(i)	Find the parametric equations of (i) $y = \cosh\left[\frac{x}{5}\right]$ (ii) $x^2 - y^2 = 4$.	[2+3]
	(ii)	State Wallis's formula and hence evaluate $\int_0^{\frac{\pi}{2}} \sin^7\theta \cos^8\theta d\theta$.	
(e)	(i)	Prove that the linear part of the equation	[2+3]
		$4x^2 - 12xy + 9y^2 + 4x + 6y + 1 = 0$	
		cannot be made to disappear by only change of parallel axes.	
	(ii)	Prove that the length of the focal chord of the conic $\frac{l}{r} = 1 - e\cos\theta$, which is	is
		inclined to the initial line at an angle α , is $\frac{2l}{1-e^2\cos^2\alpha}$.	
(f)	(i)	Find the equations of the generating lines of the paraboloid	[3+2]
		(x + y + z)(2x + y - z) = 6z which pass through the point (1,1,1).	
	(ii)	Find the equation of the right circular cylinder whose axis is $x = y = z$ an radius is 5 units.	d
(g)	(i)	Solve: $2ydx - xdy = xy^3dy$.	[2+3]
	(ii)	Solve $p = \sin(y - px)$, $p \equiv \frac{dy}{dx}$ for general and singular solutions.	
(h)	(i)	Solve: $sinx \frac{dy}{dx} + y^2 = ycosx$.	[3+2]
	(ii)	Solve: $(y^2 e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0.$	

2. Answer any three questions:

- $10 \times 3 = 30$ If $x = \tan(20ay)$ then prove that (a) (i) [3+3+4] $(1 + x²)y_{n+1} + (2nx - 1)y_n + n(n - 1)y_{n-1} = 0.$ (ii) Evaluate $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$. (iii) Find the asymptotes to the curve, $x^4 - 5x^2y^2 + 4y^4 + x^2 - 2y^2 + 2x + y + 7 = 0.$ Find the entire surface area of the solid formed by the revolution of the [4+3+3](b) (i) cardioide $r = a(1 + cos\theta)$ about the initial line. (ii) If $I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$ and n > 1 then show that $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}.$ (iii) Find the length of the curve $x = e^{\theta} \sin \theta$, $y = e^{\theta} \cos \theta$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$. Reduce the following to the canonical form (c) (i) [4+4+2] $8x^2 - 12xy + 17y^2 + 16x - 12y + 3 = 0.$ A cone has for its guiding curve the circle (ii) $x^2 + y^2 + 2ax + 2by = 0, z = 0$ and passes through a fixed point (0,0,c). If the section of the cone by the plane x = 0 is a rectangular hyperbola then prove that the vertex lies on the fixed circle $x^{2} + y^{2} + z^{2} + 2ax + 2by = 0, 2ax + 2by + cz = 0.$ (iii) Find the equations to the generating lines of the hyperboloid $\frac{1}{4}x^2 + \frac{1}{9}y^2 - \frac{1}{16}z^2 = 1$ which pass through the point $(2, -1, \frac{4}{3})$. Solve: $(x^2y^3 + 2xy)dy = dx$, given that when x = 1, y = 1. (d) (i) [3+3+4](ii) Using the transformation $x^2 \sqrt{y} = v$, solve $(2 + 2x^2\sqrt{y})ydx + (x^2\sqrt{y} + 2)xdy = 0.$ (iii) By the substitution $x^2 = u$, $y^2 = v$ (or, otherwise) reduce the equation $x^{2} + y^{2} - (p + p^{-1})xy = c^{2}$ to Clairaut's form and find the general integral and singular solution. If the astroid $x^{2/3} + y^{2/3} = c^{2/3}$ is the envelope of the family of ellipses [4+3+3] (e) (i) $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ then prove that a + b = c. Find the length of the parabola $x^2 = 20y$ measured from the vertex to an (ii)
 - (iii) Find the equation of a circle passing through the points (2, -1, -3), (1,1,-3), (-1,5,0).

extremity of its latus rectum.