B.A/B.Sc $1^{\text {st }}$ Semester (Honours) Examination, 2020 (CBCS)
 Subject: Mathematics
 Course: BMH1CC01 (Calculus, Geometry and Differential Equation)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:

(a) (i) Prove that $\sinh ^{-1} x=\log \left(x+\sqrt{x^{2}+1}\right)$, for all $x \in \mathbb{R}$.
(ii) Find the points of inflexion, if any, of the curve $y=e^{-x^{2}}$.
(b) (i) Trace the curve $x=y\left(y^{2}-1\right)$.
(ii) Find the nature of concavity of the curves (i) $y=x^{4}$ and (ii) $y=e^{x}$.
(c) (i) Evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{5} x d x$ by reduction formula.
(ii) Derive a reduction formula for $\int x(\log x)^{n} d x$ for $n \in \mathbb{Z}^{+}$.
(d) (i) Find the parametric equations of (i) $y=\cosh \left(\frac{x}{5}\right)$ (ii) $x^{2}-y^{2}=4$.
(ii) State Wallis's formula and hence evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{7} \theta \cos ^{8} \theta d \theta$.
(e) (i) Prove that the linear part of the equation

$$
4 x^{2}-12 x y+9 y^{2}+4 x+6 y+1=0
$$

cannot be made to disappear by only change of parallel axes.
(ii) Prove that the length of the focal chord of the $\operatorname{conic} \frac{l}{r}=1-e \cos \theta$, which is inclined to the initial line at an angle α, is $\frac{2 l}{1-e^{2} \cos ^{2} \alpha}$.
(f) (i) Find the equations of the generating lines of the paraboloid $(x+y+z)(2 x+y-z)=6 z$ which pass through the point $(1,1,1)$.
(ii) Find the equation of the right circular cylinder whose axis is $x=y=z$ and radius is 5 units.
(g) (i) Solve: $2 y d x-x d y=x y^{3} d y$.
(ii) Solve $p=\sin (y-p x), p \equiv \frac{d y}{d x}$ for general and singular solutions.
(h) (i) Solve: $\sin x \frac{d y}{d x}+y^{2}=y \cos x$.
(ii) Solve: $\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0$.

2. Answer any three questions:

(a) (i) If $x=\tan (\log y)$ then prove that
$\left(1+x^{2}\right) y_{n+1}+(2 n x-1) y_{n}+n(n-1) y_{n-1}=0$.
(ii) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\operatorname{tanx} x}{x}\right)^{\frac{1}{x^{2}}}$.
(iii) Find the asymptotes to the curve, $x^{4}-5 x^{2} y^{2}+4 y^{4}+x^{2}-2 y^{2}+2 x+y+7=0$.
(b) (i) Find the entire surface area of the solid formed by the revolution of the cardioide $r=a(1+\cos \theta)$ about the initial line.
(ii) If $I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x$ and $n>1$ then show that

$$
I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1}
$$

(iii) Find the length of the curve $x=e^{\theta} \sin \theta, y=e^{\theta} \cos \theta$ from $\theta=0$ to $\theta=\frac{\pi}{2}$.
(c) (i) Reduce the following to the canonical form
$8 x^{2}-12 x y+17 y^{2}+16 x-12 y+3=0$.
(ii) A cone has for its guiding curve the circle $x^{2}+y^{2}+2 a x+2 b y=0, z=0$ and passes through a fixed point $(0,0, c)$. If the section of the cone by the plane $x=0$ is a rectangular hyperbola then prove that the vertex lies on the fixed circle
$x^{2}+y^{2}+z^{2}+2 a x+2 b y=0,2 a x+2 b y+c z=0$.
(iii) Find the equations to the generating lines of the hyperboloid $\frac{1}{4} x^{2}+\frac{1}{9} y^{2}-\frac{1}{16} z^{2}=1$ which pass through the point $\left(2,-1, \frac{4}{3}\right)$.
(d) (i) Solve: $\left(x^{2} y^{3}+2 x y\right) d y=d x$, given that when $x=1, y=1$.
(ii) Using the transformation $x^{2} \sqrt{y}=v$, solve $\left(2+2 x^{2} \sqrt{y}\right) y d x+\left(x^{2} \sqrt{y}+2\right) x d y=0$.
(iii) By the substitution $x^{2}=u, y^{2}=v$ (or, otherwise) reduce the equation $x^{2}+y^{2}-\left(p+p^{-1}\right) x y=c^{2}$ to Clairaut's form and find the general integral and singular solution.
(e) (i) If the astroid $x^{2 / 3}+y^{2 / 3}=c^{2 / 3}$ is the envelope of the family of ellipses $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$ then prove that $a+b=c$.
(ii) Find the length of the parabola $x^{2}=20 y$ measured from the vertex to an extremity of its latus rectum.
(iii) Find the equation of a circle passing through the points $(2,-1,-3)$, $(1,1,-3),(-1,5,0)$.

